Semantic Crossover Operator for GP based on the Second Partial Derivative of the Error Function
نویسندگان
چکیده
In recent years, a variety of semantic operators have been successfully developed to improve the performance of GP. This work presents a new semantic operator based on the semantic crossover based on the partial derivative error. The operator presented here uses the information of the second partial derivative to choose a crossover point in the second parent. The results show an improvement with respect to previous semantic operator.
منابع مشابه
Semantic Crossover Based on the Partial Derivative Error
There is great interest for the development of semantic genetic operators to improve the performance of genetic programming. Semantic genetic operators have traditionally been developed employing experimentally or theoretically-based approaches. Our current work proposes a novel semantic crossover developed amid the two traditional approaches. Our proposed semantic crossover operator is based o...
متن کاملSemantic Similarity based Crossover in GP for Real-valued Function Regression
In this paper we propose a new method for implementing the crossover operator in Genetic Programming (GP) called Semantic Similarity based Crossover (SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20]. SSC extends SAC by adding semantics to control the change of the semantics of the individuals during the evolutionary process. The new crossover operator is then tested on...
متن کاملAN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM
Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...
متن کاملSemantic Similarity Based Crossover in GP: The Case for Real-Valued Function Regression
In this paper we propose a new method for implementing the crossover operator in Genetic Programming (GP) called Semantic Similarity based Crossover (SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20]. SSC extends SAC by adding semantics to control the change of the semantics of the individuals during the evolutionary process. The new crossover operator is then tested on...
متن کاملSemantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression
In this paper, we apply the ideas from [2] to investigate the effect of some semantic based guidance to the crossover operator of GP. We conduct a series of experiments on a family of real-valued symbolic regression problems, examining four different semantic aware crossover operators. One operator considers the semantics of the exchanged subtrees, while the other compares the semantics of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Research in Computing Science
دوره 94 شماره
صفحات -
تاریخ انتشار 2015